1. List of requirements
Number Title
Instance creation

Instance creation

URI Generation

Validation
Validating single
field
XML Schema
datatypes
URI References

Multi-linguality
¢ Input languages

. Language tags

Other languages
Field definitions
- Field labels
Configurable fields

CRM Support

Extensibility

Atomic field values
Inline field
definitions

Field definitions as
RDF

* Instantiation of
field definitions
using spreadsheets
Spreadsheet
transformation

Input components
Dates

SCHEDULE 2: THE REQUIREMENTS

Description

It MUST be possible to use the forms to create new
instances, where field values are initially unpopulated

It MUST be possible to define the URI pattern for newly
created instances

The system MUST support the validation of single field
values
Literal values MUST be validated against their datatype

The system MUST be able to check that the field value is in a
particular set of URIs (expressible in an ASK query)

The input fields MUST support English and Arabic and
Russian

It MUST be possible to set / change the language tag of a
field value.

According to RDF 1.1, language tags are supported for
literals of type http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#langString

The input fields SHOULD support other languages.

The field labels need to be configurable

" Input fields MUST have some basic configuration

functionality for each property, e.g. data/input type, visible,
multiple.

The fields MUST be expressive enough to support authoring
instances of the CRM model

The system SHOULD designed to be configurable (or it be
feasible to change the form) to create a different input form
based on a different CRM model in the future

The system MUST support atomic field values

The developer MUST be able to provide field definitions
inline in a form configuration.

In addition to the inline field definitions, it SHOULD be
possible to specify field definitions as RDF to be read from a
configuration storage (for example, database or file).

The domain expert SHOULD be able to instantiate patterns
of field definitions through spreadsheets.

The system MUST provide means (a script) to transform the
spreadsheet definition to field definitions that can be used in
the form configuration.

The user MUST be able to specify dates. Dates can be
specified as a literal value or using a date picker. Date ranges
are treated as separate fields (one field each for start and
end).

Page 17 of 26

. Numerical data

- with units with units (such as kg). The units are fixed for a given field
definition.
Text The user MUST be able to provide free text, the size of the
 text boxes to be configurable
URI references The user MUST be able to select a resource (via its URI)
a.) URI from The user MUST be able to select a resource from a
Dropdown Dropdown-menu
b.) URIs with The system MUST auto-suggest from a configurable set of
Auto-Suggestions resources as the user types
Cardinalities
Multiple values It MUST be possible to configure properties with multiple
values, e.g. multiple material values, “cotton”, “polyester”,
etc
Layout
- Navigation, Logical @ The input form MUST have navigation to allow a user to
grouping quickly access a particular part / section of the form. The
. logical grouping (sections) can be declaratively configured in
using markup.
Order of fields It MUST be possible to define the order of input fields
Misc
Saving state The input form SHOULD save the data as entered, i.e.
maintain state on the client side. The client state is only saved
for one current record.
Saving and The user MUST be able to save the record and update the
updating records record at a later point. During the update, the old version of
the record will be deleted entirely and the new version of the
record will be stored.
ResearchSpace - The system MUST integrate with the existing ResearchSpace
platform . platform
Provenance
Basic provenance Basic provenance of the record SHOULD be saved (inputters
~ name, date)
Security
RS Security - The ability to access and use the form SHOULD comply with
normal RS security (login, authentication)
Standards
compliance

Numerical values

RDF 1.1 Support

2. Field Representations

The user MUST be able to enter atomic numerical values
The user SHOULD be able to enter atomic numerical values

The input form must be compatible with the RDF 1.1
standard, i.e. they must produce data that conforms to RDF
1.1

The goal is to have a reusable, RDF-based scheme for the presentation of patterns, where these pattern definitions
could be stored in a database or also provided inline in the configuration of a particular component.

The configuration of specific forms and corresponding field definitions themselves are not part of the services
provided, they are created by the client / form engineer. The following properties will need to be provided as part of a
field definition:

Property Type Comment
autosuggestio string SPARQL SELECT query string to generate a dynamic suggestion list
. nPattern based on textindex or regex search

- The following convention apply:
* the query MUST expose a ?value and ?label variable, otherwise

Page 18 of 26

deletelnsertPat = string
tern

description string
id string
label string
maxOccurs number]|
© string
minOccurs number|
string

selectPattern string

validationAsk string
Pattern

. valueSetPatter ~ string
n

form or field MUST already render error on initalization time

* S$subject refers to the current entity (i.e. if form is embedded on
certain instance page, it will automatically be replaced)

* optionally, further projection variables might be exposed which
are will be fed into tupleTemplate to format the rendering
within the dropdown or autosuggestion list

» usage of § or ? should not matter, however, $ indicates for the field
engineer that the variable is supposed to be replaced/injected
later

* if query contains a ?token variable, this will be replaced by the
actual token the user is typing i.e. into the autosuggestion
field

SPARQL DELETE / INSERT query string

The following conventions apply:

 $subject refers to the current entity (i.e. if form is embedded on
certain instance page, it will automatically be replaced)

description of a field, might be rendered e.g. onHover or as an info

icon next to the field

unique identifier of the field definition, in most cases it will be the

URI of the field definition

label used for rendering the field, for example as an HTML input

label before the input element

xsd schema max cardinality number of 0:N or "unbound"

| xsd schema min cardinality number of 0:N or "unbound"

SPARQL SELECT query string to read existing values for a field

from the database

The following convention apply:

* the query MUST expose a $value variable which binds the actual
value(s), otherwise form or field MUST already render an
error on initalization time

* S$subject refers to the current entity (i.e. if the form is embedded on
certain instance page, it will automatically be replaced)

* optionally, further projection variables might be exposed which
are will be fed into tupleTemplate to format the rendering
within the input element.

* usage of $ or ? should not matter, however, $ indicates for the field
engineer that the variable is supposed to be replaced/injected
later

SPARQL ASK query to validate values entered by the user against

the database

The following conventions apply:

. $subject refers to the current entity (i.e. if form is
embedded on certain instance page, it will
automatically be replaced)

SPARQL SELECT query string to generate a fixed list (choices) of

values that the user may choose from.

The following conventions apply:

* the query MUST expose a $value variable which binds the actual
value(s), otherwise form or field MUST already on
initalization time

 $subject refers to the current entity (i.e. if form is embedded on
certain instance page, it will automatically be replaced)

* optionally, further projection variables might be exposed which
are will be fed into tupleTemplate to format the rendering

Page 19 of 26

within the dropdown or autosuggestion list
* usage of § or ? should not matter, however, $ indicates for the field
engineer that the variable is supposed to be replaced/injected

later
xsdDatatype = string| a full or prefix XSD URI datatype identifier as specified in RDF
- URI - 1.1 https://www.w3.org/TR/rdf] 1-concepts/#xsd-datatypes

3. Mockups
The following mockups exemplify how an input form may look like:

4] E] Q 2
Home 7 Projecls + Egypt / Create new record

Create New Record

Summary Summary
Type Opject rame
Mummy wrapping
Numbers
Bral desesoion
Mumimitied bullock; linen wrappings{geometric patiern on chest): false ayes.
1
Selact Broad Tesm... -
Numbers
Olrjget 1
Auld another Mumber e Objen)
A anolhier Gthey Numbar
Gancel Next

Page 20 of 26

Home / Projects 7 Egypt - Create new record

Create New Record

Object Summary Associations m Locatiors: § Media Files Save, n

Save

Save Record

Cancsl Previous

4. Additional Notes on the Development Approach

ResearchSpace development is split into front-end and back-end development. The interaction between the two is
governed by the metaphacts platform and specifically its APIs and Widget Architecture.

4.1 Back-End Development

Back-end development will be carried out in the Java programming language, according to the official Oracle Java 8
release. All code will be tested using Oracle Java 8 on the Ubuntu 14.04 LTS release.

The deliverables will be provided with:

e Javadoc-based basic documentation

e Automated build scripts (e.g. Maven, sbt), including test scripting;
e Junit tests

Communication with front-end functionality will be via stateless and HTTP-based RESTful APIs, exchanging either
JSON and/or RDF data. Ideally JSON-LD will be used. All APIs will be documented with reference made to test
cases and subject to documentation requirements below.

4.2 Front-End Development

Front-end development will be carried out in HTML-based Javascript. All code will be tested using the latest version
of Chrome and Mozilla Firefox officially released at the delivery date on Windows 7+, Mac OSX 10 and Ubuntu
14.04.

Javascript is statically typed through the use ot 'l'ypeScript.

Front-end code is built using React. Front-end developments are packaged using Webpack. Front-end development
uses HTMLS5 features as preference where needed, be tested for validity with the W3C tools.

4.3 Coding Standards

Page 21 of 26

